Ability of salt marsh plants for TBT remediation in sediments.

نویسندگان

  • Pedro N Carvalho
  • M Clara P Basto
  • Manuela F G M Silva
  • Ana Machado
  • A A Bordalo
  • M Teresa S D Vasconcelos
چکیده

INTRODUCTION The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions. METHODS The influence of H. portulacoides on degradation of the butyltin compounds was assessed in two different ways: (1) a 9-month ex situ study carried out in a site of Sado River estuary, center of Portugal, which used polluted sediments collected at other nonvegetated site from the same estuary; and (2) a 12-month laboratorial study, using both plant and sediment collected at a relatively clean site of Cávado River estuary, north of Portugal, the sediment being doped with TBT, DBT, and MBT at the beginning of the experiment. The role of both S. fruticosa and S. maritima on TBT remediation in sediments was evaluated in situ, in salt marshes from Marim channel of Ria Formosa lagoon, south of Portugal, which has large areas colonized by each one of these two plants. For estimation of microbial abundance, total cell counts of sediment samples were enumerated by the DAPI direct count method. Butyltin analyses in sediment were performed using a method previously validated, which consisted of headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry after in situ ethylation (with tetraethylborate). RESULTS Sediments colonized both ex situ and at lab by H. portulacoides displayed TBT levels about 30% lower than those for nonvegetated sediments with identical initial composition, after 9-12 months of plant exposure. In addition, H. portulacoides showed to be able of stimulating bacterial growth in the plant rhizosphere, which probably included degraders of TBT. In the in situ study, which compared the levels of TBT, DBT, and MBT in nonvegetated sediment and in sediments colonized by either S. maritima or S. fruticosa from the same area, TBT and DBT were only detected in nonvegetated sediment, whereas MBT was quantified in most samples. DISCUSSION This work demonstrated that H. portulacoides has potentiality to be used for enhancing TBT remediation in sediments from salted areas. The results observed in situ for S. maritima or S. fruticosa suggested that these two salt marsh plants also favored TBT remediation. CONCLUSION Therefore, the application of halophytes in technologies for TBT remediation in sediments seems to be efficient both in situ and ex situ, cost effective, and nondestructive, despite the fact that they have been rarely used for this purpose so far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt marsh rhizosphere affects microbial biotransformation of the widespread halogenated contaminant tetrabromobisphenol-A (TBBPA)

Estuarine sediments are the repository for a wide range of contaminants. Anthropogenic impacts and variations in the belowground biomass of salt marsh plants potentially select for different sediment microbial communities with different functional capabilities, including the ability to biotransform anthropogenic contaminants. There are large differences in both root morphology and the amount of...

متن کامل

Long-term effects of mercury in a salt marsh: hysteresis in the distribution of vegetation following recovery from contamination.

During four decades, the Ria de Aveiro was subjected to the loading of mercury from a chlor-alkali industry, resulting in the deposition of several tons of mercury in the sediments. The present study evaluates the impact of this disturbance and the recovery processes, temporally and spatially, by means of examining the richness of the species of salt marsh plants and mercury concentrations in s...

متن کامل

Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments.

Most probable numbers (MPNs) of methanogens in various salt marsh and estuarine sediments were determined with an anaerobic, habitat-simulating culture medium with 80% H(2) plus 20% CO(2) as substrate. Average MPNs for the short Spartina (SS) marsh sediments of Sapelo Island, Ga., were maximal at the 5- to 7-cm depth (1.2 x 10/g of dry sediment). Populations decreased to approximately 880/g of ...

متن کامل

Microbes a Tool for the Remediation of Organotin Pollution Determined by Static Headspace Gas Chromatography-Mass Spectrometry.

Tributyltin (TBT) is one of the most toxic anthropogenic compounds introduced into the marine environment. Despite its global ban in 2008, TBT is still a problem of great concern due to its high affinity for particulate matter, providing a direct and potentially persistent route of entry into benthic sediments. Bioremediation strategies may constitute an alternative approach to conventional phy...

متن کامل

Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB) as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science and pollution research international

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2010